Semiparametric Density Forecasts of Daily Financial Returns from Intraday Data∗

نویسندگان

  • Mark Hallam
  • Jose Olmo
چکیده

In this paper we propose a new method for producing semiparametric density forecasts for daily financial returns from high-frequency intraday data. The daily return density is estimated directly from intraday observations that have been appropriately rescaled using results from the theory of unifractal processes. The method preserves information concerning both the magnitude and sign of the intraday returns and allows them to influence all properties of the daily return density via the use of nonparametric specifications for the daily return distribution. The out-ofsample density forecasting performance of the method is shown to be competitive with existing methods based on intraday data for exchange rate and equity index data. JEL: C58, C22, G17

منابع مشابه

Forecasting Daily Return Densities from Intraday Data: a Multifractal Approach

This paper proposes a new approach for estimating and forecasting the moments and probability density function of daily financial returns from intraday data. This is achieved through a new application of the distributional scaling laws for the class of multifractal processes. Density forecasts from the new multifractal approach are typically found to provide substantial improvements in predicti...

متن کامل

Forecasting daily exchange rate volatility using intraday returns

This study investigates whether intraday returns contain important information for forecasting daily volatility. Whereas in the existing literature volatility models for daily returns are improved by including intraday information such as the daily high and low, volume, the number of trades, and intraday returns, here the volatility of intraday returns is explicitly modelled. Daily volatility f...

متن کامل

Do high-frequency measures of volatility improve forecasts of return distributions?

Many finance questions require the predictive distribution of returns. We propose a bivariate model of returns and realized volatility (RV), and explore which features of that time-series model contribute to superior density forecasts over horizons of 1 to 60 days out of sample. This term structure of density forecasts is used to investigate the importance of: the intraday information embodied ...

متن کامل

Evaluating interval forecasts of high-frequency financial data

A number of methods of evaluating the validity of interval forecasts of financial data are analysed, and illustrated using intraday FTSE100 index futures returns. Some existing interval forecast evaluation techniques, such as the Markov chain approach of Christoffersen (1998), are shown to be inappropriate in the presence of periodic heteroscedasticity. Instead, we consider a regression-based t...

متن کامل

A Parsimonious Continuous Time Model Of Equity Index Returns (Inferred From High Frequency Data)

In this paper we propose a continuous time model capable of describing the dynamics of futures equity index returns at different time frequencies. Unlike several related works in the literature, we avoid specifying a model a priori and we attempt, instead, to infer it from the analysis of a data set of 5-minute returns on the S&P500 futures contract. We start with a very general specification. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013